Паропроницаемость материалов

Алан-э-Дейл       28.12.2022 г.

Оглавление

Особенности состава, свойства ГВ

В составе стройматериала 93 процента занимает гипс, 6 процентов – картон. Последний процент состоит из крахмала, влаги и ПАВ. Горючим элементом ГКЛ является картонная прослойка. Но под воздействием высоких температур она не горит, а просто плавится (такой эффект обусловлен отсутствием воздуха между шарами гипса).

ГВ обладает хорошей гибкостью. Чтобы сделать из него фигуру, его достаточно немного намочить.

Крепить ГКЛ можно на металлопрофили или мастику. Постройка из гипсокартона обладает звукоизолирующим свойством. Чем толще материал, количество используемых листов и каркасная глубина, тем меньше звуков будет пропускать конструкция. Усилить шумоизоляцию гипсокартонной постройки можно листами минеральной ваты и пенополистирола.

На строительном рынке наибольшей популярностью пользуется ГВ «Кнауф». В основе названия – фамилия братьев, основавших в Германии производство качественных стройматериалов. Сегодня компания выпускает множество полезных товаров, а ее заводы находятся практически в каждой европейской стране.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Механизм паропроницаемости

При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.

Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.

Схема прибора для определения паропроницаемости.

Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам. Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:

  1. Американский тест с установленной вертикально чашей.
  2. Американский тест с перевернутой чашей.
  3. Японский тест с вертикальной чашей.
  4. Японский тест с перевернутой чашей и влагопоглотителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Это интересно: Какие трубы использовать для вентиляции в частном доме — познавайте с нами

Что такое паропроницаемость материалов

Паропроницаемость материалов

– способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость, Мг/(м*ч*Па)
Алюминий
Асфальтобетон
Гипсокартон
ДСП, ОСП
Дуб вдоль волокон
Дуб поперек волокон
Железобетон
Картон облицовочный
Керамзит
Керамзит
Керамзитобетон
Керамзитобетон
Кирпич керамический пустотелый (брутто1000)
Кирпич керамический пустотелый (брутто1400)
Кирпич красный глиняный
Кирпич, силикатный
Линолеум
Минвата
Минвата
Пенобетон
Пенобетон
Пенопласт ПВХ
Пенополистирол
Пенополистирол
Пенополистирол
ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
Пеностекло
Пеностекло
Песок
ПОЛИМОЧЕВИНА
ПОЛИУРЕТАНОВАЯ МАСТИКА
Полиэтилен
Рубероид, пергамин
Сосна, ель вдоль волокон
Сосна, ель поперек волокон
Фанера клееная

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости

— это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости

указывается на следующие показатели:

  1. Тепловая проводимость — это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение — это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение — это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость — это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости

, так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой — разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция — это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции — это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Сравнение утеплителей по теплопроводности

Пенополистирол (пенопласт)

Плиты пенополистирола (пенопласта)

Это самый популярный теплоизоляционный материал в России, благодаря своей низкой теплопроводности, невысокой стоимости и легкости монтажа. Пенопласт изготавливается в плитах толщиной от 20 до 150 мм путем вспенивания полистирола и состоит на 99% из воздуха. Материал имеет различную плотность, имеет низкую теплопроводность и устойчив к влажности.

Благодаря своей низкой стоимости пенополистирол имеет большую востребованность среди компаний и частных застройщиков для утепления различных помещений. Но материал достаточно хрупкий и быстро воспламеняется, выделяя токсичные вещества при горении. Из-за этого пенопласт использовать предпочтительнее в нежилых помещениях и при теплоизоляции не нагружаемых конструкций — утепление фасада под штукатурку, стен подвалов и т.д.

Экструдированный пенополистирол

Пеноплэкс (экструдированный пенополистирол)

Экструзия (техноплэкс, пеноплэкс и т.д.) не подвергается воздействию влаги и гниению. Это очень прочный и удобный в использовании материал, который легко режется ножом на нужные размеры. Низкое водопоглощение обеспечивает при высокой влажности минимальное изменение свойств, плиты имеют высокую плотность и сопротивляемость сжатию. Экструдированный пенополистирол пожаробезопасен, долговечен и прост в применении.

Все эти характеристики, наряду с низкой теплопроводностью в сравнении с прочими утеплителями делает плиты техноплэкса, URSA XPS или пеноплэкса идеальным материалом для утепления ленточных фундаментов домов и отмосток. По заверениям производителей лист экструзии толщиной в 50 миллиметров, заменяет по теплопроводности 60 мм пеноблока, при этом материал не пропускает влагу и можно обойтись без дополнительной гидроизоляции.

Минеральная вата

Плиты минеральной ваты Изовер в упаковке

Минвата (например, Изовер, URSA, Техноруф и т.д.) производится из натуральных природных материалов – шлака, горных пород и доломита по специальной технологии. Минеральная вата имеет низкую теплопроводность и абсолютно пожаробезопасна. Выпускается материал в плитах и рулонах различной жесткости. Для горизонтальных плоскостей используются менее плотные маты, для вертикальных конструкций используют жесткие и полужесткие плиты.

Однако, одним из существенных недостатков данного утеплителя, как и базальтовой ваты является низкая влагостойкость, что требует при монтаже минваты устройства дополнительной влаго- и пароизоляции. Специалисты не рекомендуют использовать минеральная вату для утепления влажных помещений – подвалов домов и погребов, для теплоизоляции парилки изнутри в банях и предбанников. Но и здесь ее можно использовать при должной гидроизоляции.

Базальтовая вата

Плиты базальтовой ваты Роквул в упаковке

Данный материал производится расплавлением базальтовых горных пород и раздуве расплавленной массы с добавлением различных компонентов для получения волокнистой структуры с водоотталкивающими свойствами. Материал не воспламеняется, безопасен для здоровья человека, имеет хорошие показатели по теплоизоляции и звукоизоляции помещений. Используется, как для внутренней, так и для наружной теплоизоляции.

При монтаже базальтовой ваты следует использовать средства защиты (перчатки, респиратор и очки) для защиты слизистых оболочек от микрочастиц ваты. Наиболее известная в России марка базальтовой ваты – это материалы под маркой Rockwool. При эксплуатации плиты теплоизоляции не уплотняются и не слеживаются, а значит, прекрасные свойства низкой теплопроводности базальтовой ваты со временем остаются неизменными.

Пенофол, изолон (вспененный полиэтилен)

Пенофол и изолон – это рулонные утеплители толщиной от 2 до 10 мм, состоящие из вспененного полиэтилена. Материал также выпускается со слоем фольги с одной стороны для создания отражающего эффекта. Утеплитель имеет толщину в несколько раз тоньше представленных ранее утеплителей, но при этом сохраняет и отражает до 97% тепловой энергии. Вспененный полиэтилен имеет длительный срок эксплуатации и экологически безопасен.

Изолон и фольгированный пенофол – легкий, тонкий и очень удобный в работе теплоизоляционный материал. Используют рулонный утеплитель для теплоизоляции влажных помещений, например, при утеплении балконов и лоджий в квартирах. Также применение данного утеплителя поможет вам сберечь полезную площадь в помещении, при утеплении внутри. Подробнее об этих материалах читайте в разделе «Органическая теплоизоляция».

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Что такое паропроницаемость материалов

Паропроницаемость материалов

– способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость, Мг/(м*ч*Па)
Алюминий
Асфальтобетон
Гипсокартон
ДСП, ОСП
Дуб вдоль волокон
Дуб поперек волокон
Железобетон
Картон облицовочный
Керамзит
Керамзит
Керамзитобетон
Керамзитобетон
Кирпич керамический пустотелый (брутто1000)
Кирпич керамический пустотелый (брутто1400)
Кирпич красный глиняный
Кирпич, силикатный
Линолеум
Минвата
Минвата
Пенобетон
Пенобетон
Пенопласт ПВХ
Пенополистирол
Пенополистирол
Пенополистирол
ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
Пеностекло
Пеностекло
Песок
ПОЛИМОЧЕВИНА
ПОЛИУРЕТАНОВАЯ МАСТИКА
Полиэтилен
Рубероид, пергамин
Сосна, ель вдоль волокон
Сосна, ель поперек волокон
Фанера клееная

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости

— это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости

указывается на следующие показатели:

  1. Тепловая проводимость — это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение — это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение — это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость — это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости

, так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой — разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция — это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции — это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Расчет точки росы для стен своего коттеджа

Расчет точки росы очень важен: речь идет о температурном показателе, благодаря которому можно определить точную отметку, при которой пар дойдет до максимального насыщения и начнет превращаться в капли воды. Благодаря правильному расчету этого значения удастся верно определить толщину стен и оптимальный утеплитель.

Увидеть капли росы можно и при правильных расчетах в качественно построенном жилье: это капли воды на окнах, которые появляются при резких изменениях температуры воздуха за окном. Когда в квартире +20, а за окном минус, такой перепад провоцирует появление конденсата на окнах. Кроме того, большое значение имеет уровень влажности в помещении (появляется от дыхания, приготовления пищи, влажности на улице и т.д.).

Влагу, которая скапливается на стеклах, можно вытереть, а вот когда из-за неверных расчетов или ошибок в выборе материалов роса собирается внутри газобетона, удалить ее оттуда невозможно и разрушений не избежать. Когда за окном минус, где-то в стене появится температура, при котором пар начинает конденсироваться и превращаться в воду

Важно найти точку росы и строить стены так, чтобы она была не внутри стены, а вовне

В расчетах точки росы учитывают такие параметры, как влажность в помещении, температура внутри и снаружи, марка материала и толщина стены. Также помнят о парциальном давлении (упругость пара) – в морозы во внешней среде данный показатель низкий, а там, где тепло, он выше. Пар хочет выбраться наружу – туда, где ниже давление. Поэтому зимой в газобетонных блоках D500 толщиной 40 сантиметров точка росы будет в стене ближе к наружной части.

Когда используется минеральная вата толщиной в 10 сантиметров при тех же исходных данных стены, укладывают паронепроницаемую пленку внутри помещения и так удается исключить вероятность промерзания из-за влаги. Если утеплитель выбран верно, точка росы будет находиться в толще утеплителя, не в стене.

Рассчитать точку росы можно с использованием специальных онлайн-калькуляторов или с применением формул, значений выбранных материалов. Но гораздо проще просто учитывать основные правила и советы мастеров: для средней полосы достаточно стены в 400 миллиметров, для стены в 300 миллиметров нужен утеплитель.

Стоимость ГКЛВ

Гипсокартон относится к недорогому сегменту отделочных материалов, диапазон цен на которые довольно широк. Стоимость зависит производителя, размера и веса, типа кромки и химического состава пластины (сколько гидрофобного компонента содержится в гипсе).

Для сравнения рассмотрим цены по Москве:

  • влагостойкая плита от одного из лидеров в производстве стройматериалов – компании KNAUF –будет стоить от 99 до 465 руб.;
  • лист ГКЛВ – от 96 до 370 руб.;
  • ГКЛВ ведущего мирового производителя Gyproc – от 78 до 410 руб.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Гибкий арочный гипсокартон Knauf толщиной 6 мм

Влагостойкий гипсокартон пользуется заслуженной популярностью среди мастеров-отделочников благодаря его многообразию и функциональности, а также легкости и удобству при раскрое, нарезке и монтаже.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.


На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость минеральной ваты и пенопласта

Закрытоячеистая структура пенопласта из-за которой он не пропускает пар.

Паропроницаемость – это способность материала проводить пар, как говорят в народе – дышать. Паропроницаемость выражается в мг/м*ч*Па. Это пара в мг, который проходит за час через 1 м. кв утеплителя толщиной один метр. При этом должно соблюдать условие, что температура с обеих сторон утеплителя одинаковая и давление водяного пара составляет 1 Па

Значение паропроницаемости особенно важно, когда вы решаете, чем лучше утеплять пенопластом или минватой деревянный дом. Хотя этот показатель актуален и для кирпича с бетоном

Скопление влаги приводит к негативным последствиям – это образование грибка, снижение теплосопротивления ограждающей конструкции, сокращение срока эксплуатации.

Посмотрим на заявленные производителем значения:

  • пенопласт 0,05 мг/м*ч*Па;
  • экструдированный пенополистирол 0,013 мг/м*ч*Па;
  • минеральная вата 0,3-0,5 мг/м*ч*Па.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени

Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома

8.6 Коэффициент сопротивления диффузии водяного пара

Коэффициент
сопротивления диффузии водяного пара m (безразмерная величина)
вычисляют по формуле

(6)

где dвоэдуха — паропроницаемость воздуха .

Примечание — Если паропроницаемость воздуха и материала образца зависит от
атмосферного давления в одинаковой степени, можно считать, что их отношение
(коэффициент m) не зависит
от атмосферного давления. При определении плотности потока водяного пара
фактическое значение атмосферного давления может быть учтено с помощью формулы

(7)

Паропроницаемость воздуха dвоэдуха может быть вычислена по формулам Ширмера:

(8а)

(8b)

где D— коэффициент диффузии
водяного пара, м2/ч;

RD— газовая постоянная водяного пара, равная 462 · 10-6 Н · м/(мг · К);

Т— температура
испытания, К;

р — нормальное атмосферное давление, равное 1013,25
гПа;

р — среднее атмосферное давление в процессе
испытания, гПа.

Примечание — Атмосферное давление можно определить барометром или обратиться в
метеорологическую службу.

Паропроницаемость газосиликатных блоков

Технология.

Он и создаёт пористую структуру. поры получаются незакрытыми а водород такой газ что даже сквозь метал просачивается. В итоге водород очень быстро замещается воздухом. В состав может добавляться цемент, шлак, и.т.д. с целью уменьшения стоимости и улучшения прочностных или других характеристик. Химической реакцией обусловлено большое начальное количество воды в блоках.

В силу того что производством автоклавного газобетона занимаются достаточно крупные заводы, геометрия и стабильность характеристик как правило весьма высоки.

Теплоёмкость.

Теплоёмкость у газосиликата средняя. То есть удельная она даже выше чем у кирпича С=1000 Дж/кг°С против С=880 Дж/кг°С у кирпича. Вот только плотность газосиликата 400-500 кг/м3. Против 1600-1800 кг/м3 у кирпича. отсюда и получается в (880*1600)/(1000*400)=3,52 раза меньшая теплоёмкость по сравнению с кирпичом. Дерево при своей плотности 650 кг/м3 имеет удельную теплоёмкость С=2700 Дж/кг°С и опережает кирпич.

Это конечно значитьльно больше чем СИП или Каркас но значительно меньше чем дерево или кирпич.

Паропроницаемость.

Это хорошая иллюстрация того когда неправильная наружняя отделка и нарушение технологии привело к таким последствиям https://realty.tut.by/news/building/427198.html

Журналисты там неправильно описали физику процесса. Правильная выглядит так.

Блоки с завода пришли с высокой естественной влажностью, дому не дали отстоятся и высохнуть а сразу оштукатурили и окрасили. Паропроницаемость обычной штукатурки и краски значительно ниже чем у газобетона. В результате большое количество воды не вышло из стены до зимы. Образовалась точка росы, а поры были целиком заполнены водой. И. результат на фотографии.

Звукоизоляция.

Звукоизоляция у газосиликата относительно слабая. Причин несколько это и малый вес, и пористая структура, и достаточно высокая упругость пор. Коэффициент звукоизоляции для перегородки толщиной 10 см составляет всего 35-37 Дб Тоже самое для перегородки 20 см 40-42 Дб А для стены 40 см 47-49 Дб. В то же время даже минимальные требования по звукоизоляции внутри помещения должны соответствовать 43 Дб для комнат и 47 Дб для санузлов. А звукоизоляция от уличного шума минимум 52 Дб, комфортная 60 Дб.

Не думайте что разница не такая большая подумаешь пара децибел. Шкала громкости логарифмическая и разность в три децибела это в 2 раза громче! В целом звукоизоляция у газосиликата не оченьхорошая , и как правило он требует дополнительной звукоизоляции. Для наружных стен очень часто в качестве такой меры выступает лицевая кирпичная кладка. Но чаще проблема случается не с наружными а с внутренними стенами. Перегородка из 10 см блока и слышно всё очень хорошо.

Долговечность.

Газосиликат надёжный материал. Но он весьма уязвимый к замерзанию воды и механическим нагрузкам , вода может его серьёзно разрушить даже за один сезон. Непостоянные механические нагрузки, при неправильном выполнении узлов, за 30-40 лет.

Стоимость квадратного метра стены.

Квадратный метр стены из газосиликата толщиной 400 ммYTONG

Материал на м2 стены 0,4 м3*4600=1840 р/м2

Работа на м2 стены 520 р/м2

Итого материал с работой: 2360 р/м2.

Самый средний по стоимости материал.

Каркасные и дома из СИП панелей приблизительно на 1000 р/м2 стены дешевле.

Деревянные и кирпичные утеплённые дома на 1000-1500 р/м2 стеныдороже.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.