Оглавление
- Теплопроводность стали, меди, алюминия, никеля и их сплавов
- Коэффициент теплопроводности материалов.
- Виды материалов и их характеристики
- Теплопроводность, теплоемкость, плотность керамики и огнеупоров: таблицы значений
- Механические характеристики облицовочной керамики
- Теплопроводность древесины при различной влажности и плотности
- Откуда берется влага в строительных конструкциях?
- Что представляет собой пенополистирол
- Основные недостатки керамоблоков
- Теплопроводность
- Прочность
- Особенности кладки керамоблока
- Понятие термического сопротивления и коэффициента теплопроводности
- Что такое поризованный кирпич или теплая керамика
- Способы повышения теплоотдачи
- Конвекция в атмосфере
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Таблица 2
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Коэффициент теплопроводности материалов.
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Материал | Коэфф. тепл. Вт/(м2*К) |
Алебастровые плиты | 0,470 |
Алюминий | 230,0 |
Асбест (шифер) | 0,350 |
Асбест волокнистый | 0,150 |
Асбестоцемент | 1,760 |
Асбоцементные плиты | 0,350 |
Асфальт | 0,720 |
Асфальт в полах | 0,800 |
Бакелит | 0,230 |
Бетон на каменном щебне | 1,300 |
Бетон на песке | 0,700 |
Бетон пористый | 1,400 |
Бетон сплошной | 1,750 |
Бетон термоизоляционный | 0,180 |
Битум | 0,470 |
Бумага | 0,140 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,100 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,350 |
Глинозем | 2,330 |
Гравий (наполнитель) | 0,930 |
Гранит, базальт | 3,500 |
Грунт 10% воды | 1,750 |
Грунт 20% воды | 2,100 |
Грунт песчаный | 1,160 |
Грунт сухой | 0,400 |
Грунт утрамбованный | 1,050 |
Гудрон | 0,300 |
Древесина — доски | 0,150 |
Древесина — фанера | 0,150 |
Древесина твердых пород | 0,200 |
Древесно-стружечная плита ДСП | 0,200 |
Дюралюминий | 160,0 |
Железобетон | 1,700 |
Зола древесная | 0,150 |
Известняк | 1,700 |
Известь-песок раствор | 0,870 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,400 |
Картон строительный многослойный | 0,130 |
Каучук вспененный | 0,030 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,200 |
Кирпич кремнеземный | 0,150 |
Кирпич пустотелый | 0,440 |
Кирпич силикатный | 0,810 |
Кирпич сплошной | 0,670 |
Кирпич шлаковый | 0,580 |
Кремнезистые плиты | 0,070 |
Латунь | 110,0 |
Лед 0°С | 2,210 |
Лед -20°С | 2,440 |
Липа, береза, клен, дуб (15% влажности) | 0,150 |
Медь | 380,0 |
Мипора | 0,085 |
Опилки — засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,190 |
Пенобетон | 0,300 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,040 |
Пенопласт ПХВ-1 | 0,050 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,040 |
Пенополистирол ПС-БС | 0,040 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,060 |
Пеностекло тяжелое | 0,080 |
Пергамин | 0,170 |
Перлит | 0,050 |
Перлито-цементные плиты | 0,080 |
Песок 0% влажности | 0,330 |
Песок 10% влажности | 0,970 |
Песок 20% влажности | 1,330 |
Песчаник обожженный | 1,500 |
Плитка облицовочная | 1,050 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,040 |
Портландцемент раствор | 0,470 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,050 |
Резина | 0,150 |
Рубероид | 0,170 |
Сланец | 2,100 |
Снег | 1,500 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,150 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,230 |
Сталь | 52,0 |
Стекло | 1,150 |
Стекловата | 0,050 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,300 |
Стружки — набивка | 0,120 |
Тефлон | 0,250 |
Толь бумажный | 0,230 |
Цементные плиты | 1,920 |
Цемент-песок раствор | 1,200 |
Чугун | 56,0 |
Шлак гранулированный | 0,150 |
Шлак котельный | 0,290 |
Шлакобетон | 0,600 |
Штукатурка сухая | 0,210 |
Штукатурка цементная | 0,900 |
Эбонит | 0,160 |
Виды материалов и их характеристики
Кирпич, выпускаемый на сегодняшний день во множестве видов, применяется при строительстве повсеместно. Ни один объект – крупный промышленный корпус, жилой многоквартирный или небольшой частный дом, не возводится без кирпичного основания. Строительство коттеджей, популярное и сравнительно недорогое, базируется исключительно на кирпичной кладке. Кирпич давно стал основным строительным материалом.
Это произошло благодаря его универсальным свойствам:
- надежности и долговечности;
- прочности;
- экологичности;
- отличным звуко- и шумоизоляционным характеристикам.
Выделяют следующие разновидности кирпича.
Красный. Изготавливается из обожженной глины и добавок. Отличается надежностью, долговечностью и морозостойкостью. Подходит для возведения стен и строительства фундамента. Обычно кладется в один или два ряда. Теплопроводность зависит от наличия зазоров в изделии.
Бывает полнотелый керамический брикет, огнеупорный и щелевой, с пустотами. Коэффициент проводимости тепла зависит от веса кирпича, вида и количества щелей в нем. Теплая керамика внешне красива, к тому же внутри имеет множество тонких зазоров, что делает ее очень теплой и потому идеальной для строительства. Если в керамическом изделии имеются также поры, снижающие вес, кирпич называется поризованным.
К недостаткам такого кирпича следует отнести то, что отдельные единицы малого размера и хрупкие. Поэтому теплая керамика подходит не для всех конструкций. К тому же это дорогостоящий материал.
Что касается огнеупорной керамики, то это так называемый шамотный кирпич – жженый брусок из глины с высоким показателем теплопроводности, почти таким же, как у обыкновенного полнотелого материала. Вместе с тем огнеупорность – ценное свойство, которое всегда учитывают при строительстве.
Из такого «печного» кирпича сооружают камины, он обладает эстетичным внешним видом, сохраняет тепло в доме благодаря высоким показателям теплопроводности, морозоустойчив, не поддается воздействию кислот и щелочей.
Теплоемкость удельная – это энергия, которая расходуется для нагревания одного килограмма материала на один градус. Этот показатель нужен для определения устойчивости к теплу стен здания, в особенности при низких температурах.
Теплопроводность, теплоемкость, плотность керамики и огнеупоров: таблицы значений
Теплопроводность и плотность керамики, огнеупоров
В таблице представлены значения плотности, пористости П, теплопроводности керамики и огнеупоров в зависимости от температуры. Свойства керамики и огнеупоров в таблице даны для температуры от 200 до 1600°С.
Содержание оксида алюминия Al2O3 в изделиях находится в пределах от 28 до более 90%; содержание оксида кремния SiO2 в керамике от 25 до более 97%; содержание оксида циркония ZrO2 от 50 до более 90%. Также в огнеупорах содержаться оксид магния и карбид кремния.
Плотность, пористость П и теплопроводность приведены для следующих материалов: огнеупор из кварцевого стекла, керамика, содержащая оксид алюминия Al2O3, SiO2, MgO, SiC, диоксид циркония ZrO2, изделия: динасовые, полукислые, шамотные, муллитокремнеземистые, муллитовые, муллитокорундовые, корундовые, периклазовые, форстеритовые, карбидкремниевые, бадделеитовые, цирконовые плавленые и поликристаллические.
Плотность керамики в таблице приведена при температуре 20°С. Наиболее плотной и тяжелой керамикой является бадделеитовая керамика на основе оксида циркония — ее плотность составляет от 5500 до 5800 кг/м
3.
Механические характеристики облицовочной керамики
Это прочностные качества, определяющие поведение изделия под воздействием различных нагрузок, которые керамическая облицовка должна выдерживать не разрушаясь.
Такими характеристиками являются:
- Предельная величина нагрузки при работе на изгиб – это максимальное статическое усилие на изгиб, которому способна противостоять керамическая плитка до разрушения; сопротивление на изгиб прямо пропорционально толщине керамики и обратно пропорционально ее линейным размерам.
- Предел прочности при нагрузке на сжатие – это максимальное значение вертикальной статической нагрузки на поверхность плитки, которое керамика может вынести без разрушения; прямо пропорционально плотности плитки и обратно пропорционально её коэффициенту пористости. Величины этих двух характеристик керамической плитки определяются в лабораторных условиях опытными испытаниями образцов до разрушения, должны соответствовать требованиям ГОСТ и на упаковку материала не наносятся.
- Поверхностная твёрдость (износостойкость) — способность лицевого слоя плитки противостоять царапинам и абразивному воздействию. Эта техническая характеристика отделочного материала особенно важна при выборе покрытия для пола, поэтому она обязательно указывается на упаковке одним из двух способов – по одной из двух шкал:
- Шкала Мооса – величина твёрдости определяется коэффициентами от 1 (минимум) до 10 (максимум) по нарастающей;
- Шкала P.E.I. (институт США Porcelain Enamel Institute) – все виды плитки разбиты на 5 групп: PEI-I, II, III, IV и V по нарастанию твёрдости.
Теплопроводность древесины при различной влажности и плотности
В таблице приведены значения теплопроводности любого типа древесины независимо от породы дерева в зависимости от плотности при различной объемной влажности. Данные приведены при положительных и отрицательных температурах вдоль и поперек волокон
древесины.
Для деревообработки используются гораздо меньше энергоресурсов, чем для других строительных материалов.
- В 4 раза меньше, чем для бетона.
- В 6 раз меньше, чем для пластмассы.
- В 24 раза меньше, чем для стали.
- В 126 раз меньше, чем для алюминия.
Дерево в 6 раз больше изолирующего, чем кирпич, и в 15 раз больше изолирующего, чем бетон, что приводит к значительной экономии тепла. Например, среднее потребление энергии шведской семьей на 50% ниже, чем у французской семьи. Отмечается, что расчетное значение для этого типа стены ниже, что обеспечивает отличную теплоизоляцию. Теплопроводность в таблице указана для древесины с плотностью (объемным весом) от 400 до 800 кг/м 3 . Теплопроводность дана при объемной влажности древесины в пределах от 0 до 30 %.
При увеличении плотности и влажности древесины ее теплопроводность возрастает, как вдоль, так и поперек волокон дерева. Значение теплопроводности древесины представлено в таблице в диапазоне от минимального до максимального. Размерность теплопроводности . Например, при положительных температурах и влажности 20%, максимальная теплопроводность древесины плотностью 400 кг/м 3 будет равна 0,438 Вт/(м·град).
Для сравнения, бетонная стена для достижения тех же теплоизоляционных свойств должна иметь толщину более 2, 5 метров! По этим причинам затраты на отопление зимой или кондиционирование летом в доме на сэндвич-древесине значительно ниже, чем в обычных зданиях. Комфорт дома дополняется звукоизоляцией, прямо пропорциональной деревянным и тепловым сооружениям.
Комфорт древесины Деревянная конструкция улучшает комфорт людей, живущих в ней из-за того, что стены не холодные и влажные. Кроме того, при строительстве из древесины вы получаете около 5-7% полезной поверхности по отношению к мокрому зданию. Кроме того, древесина позволяет отличную архитектурную свободу при дизайне вашего дома.
Откуда берется влага в строительных конструкциях?
Проектирование фундаментов, оснований и других бетонных сооружений ведется таким образом, чтобы добиться минимально возможного содержания влаги. Однако вода попадает в них как на стадии строительства, так и во время эксплуатации. Основные причины наличия влаги в бетоне:
- попадание атмосферных осадков: дождя, снега;
- поглощение (сорбция) влаги из воздуха;
- конденсация паров воды на поверхностях конструкций;
- воздействие грунтовых вод;
- остаточная технологическая влажность – остатки воды, использованной при затворении смеси.
Наиболее распространенными причинами избыточной влажности считаются нарушение технологического процесса при изготовлении бетона и снижение эффективности гидроизоляции вовремя его эксплуатации.
Избыточная влажность оказывает негативное влияние на нормативный срок службы и свойства строительных конструкций. В перечень наиболее серьезных последствий переувлажнения входят:
- коррозия стальной арматуры;
- снижение морозостойкости;
- увеличение теплопроводности;
- солевая эрозия;
- биоповреждение.
Измерение влажности бетона, цементной стяжки и штукатурки играет важную роль в жилом строительстве. Она влияет на прочность сцепления с лакокрасочными материалами и долговечность уложенных поверх финишных покрытий.
Что представляет собой пенополистирол
Изготавливается этот материал примерно по тому же принципу, что и любые другие вспененные утеплители. Сначала в специальную установку наливается жидкий стирол. После добавления в него особого реагента происходит реакция с выделением большого количества пены. Готовая вспененная густая масса до застывания пропускается через формовочный аппарат. В результате получаются листы материала с огромным количеством мелких воздушных камер внутри.
Такая структура плит и объясняет высокие изоляционные качества пенополистирола. Ведь воздух, как известно, тепло сохраняет очень хорошо. Существуют виды пенополистирола, в ячейках которых содержатся и другие газы. Однако самыми эффективными изоляторами все же считаются плиты именно с воздушными камерами.
Входящие в структуру пенополистирола ячейки могут иметь размер от 2 до 8 мм. На их стенки при этом приходится примерно 2% массы материала. Таким образом, пенополистирол на 98% состоит из воздуха.
Основные недостатки керамоблоков
Теперь рассмотрим минусы, которые имеет керамический пустотелый блок для того, чтобы постараться избежать их при строительстве. Щелевая структура поризованных блоков и тонкие стенки делают их очень хрупкими
Поэтому основное внимание следует уделять правильной транспортировке и аккуратной укладке этого материала
Поскольку поризованный блок активно впитывает воду, то его нужно тщательно защищать не только от влаги, поступающей из грунта (гидроизоляция первого ряда), но и от атмосферных осадков в период хранения и кладки.
Несмотря на то, что производители указывают достаточно высокие марки прочности своей продукции (от М50 и выше), лабораторные испытания показали, что фактическая марка может существенно отличаться от указанной в сертификате (М35 и ниже).
Поэтому не поленитесь отвезти несколько блоков в ближайшую стройлабораторию для испытаний, чтобы лично убедиться в их качестве. Другой хороший способ обезопасить себя от покупки некачественной керамики – продукция проверенных брендов, некоторые из которых мы указали выше.
Теплопроводность
Теплопроводность является одной из самых важных характеристик внешних стеновых блоков, чем теплопроводность меньше, тем лучше сохраняется тепло в доме, и тем меньше затраты на отопление.
По СНиПу считается, что для средней полосы России, сопротивление теплопередаче стены должно составлять 3,2 м2 С°/Вт.
Такое сопротивление теплопередаче обеспечивается следующими стеновыми блоками:
- Газобетон D300 – 300мм.
- Газобетон D400 – 400мм.
- Газобетон D500 – 500мм.
- Теплая керамика – 500 мм.
Если смотреть на теплопроводность не отдельно взятого блока, а стены в целом, то играет роль еще и толщина швов. Чем швы тоньше, тем теплее стена. В газобетоне клеевой шов получается около 2 мм, что сводит к минимуму мостики холода.
В теплой керамике швы будут около сантиметра, что сильно ухудшает тепловое сопротивление стены при кладке на обычный раствор. Потому для кладки керамических блоков применяют специальный теплый раствор, который намного лучше сохраняет тепло.
Стоимость клея для газобетона и теплого раствора для керамики примерно одинакова, но расход клея для газобетона в 5 раз меньше. Но стоит отметить, что в газобетоне вертикальные шва нужно заполнять, а в теплой керамике не нужно, что экономит теплый раствор примерно на 30%.
Прочность
Газобетон является очень пористым материалом, из-за чего он хрупкий, и имеет плохую прочность на изгиб, что часто является причиной усадочных трещин. Чтобы такого не происходило, газобетон приходится армировать, и использовать армопояс.
Но стоит отметить, что прочности на сжатие газобетонов D400 и D500 вполне хватает для возведения двухэтажного дома. Качественный автоклавный газобетон D400 обладает классом прочности на сжатие – B2,5.
В качественной теплой керамике, класс прочности на сжатие составляет B5 или B7.5, что в два-три раза выше чем у газоблока D400. То есть, из керамических блоков можно строить более высокие дома, этажностью до 9 этажей. Так что по прочности на сжатие выигрывает теплая керамика.
Особенности кладки керамоблока
Высокие параметры теплосопротивления стены из керамических блоков обусловлены не только их форматом и низкой теплопроводностью, но и наличием шип-пазовой системы фиксации элементов. При кладке раствор используется только в горизонтальном шве, по вертикали блоки стыкуются, и между ними также образуется замкнутая воздушная полость. Вкупе с хорошей геометрией блоков такой способ значительно упрощает кладку, а стены получаются достаточно ровными. Что впоследствии упрощает уже отделочные работы – тонкослойной штукатуркой не обойдешься, но и лишнего объема из-за «горбов» накидывать не придется. Толщина кладочных швов стандартная.
Кладка из керамических блоков должна соответствовать СП «Каменные и армокаменные конструкции», в котором регламентируется толщина шва в 8-12 мм. Однако в Европе есть случаи, когда керамический блок укладывали на тонкий слой клея.
Тонкошовная кладка допускается, когда блоки шлифованные, что большая редкость для отечественного рынка ввиду их высокой стоимости. А для дополнительного сокращения теплопотерь сквозь швы, рекомендуется применять готовые кладочные смеси.
Швы из кладочного раствора между керамическими блоками влияют не только на прочность кладки, но и на ее теплопроводность. Через данные швы, ввиду их плотности, быстрее проходит холод. Чтобы холод не проходил через швы, при кладке керамических блоков используют специальный теплый кладочный раствор, в составе которого присутствует перлит, значительно улучшающий теплопроводность раствора. Тем самым, кладка в плане теплопроводности становится более равномерной.
С учетом только постельного шва и формата блоков, затраты на готовый теплый раствор в рамках общестроительного бюджета будут не настолько больше, чтобы выбирать самомес из соображений экономии.
Как и кирпичная, кладка из керамоблоков должна выполняться с перевязкой – существует специальная формула расчета шага перевязки, для получения оптимальной по монолитности и жесткости конструкции. S=0,4·H. Где:
- S – шаг перевязки;
- H – высота блока.
Высота блоков стандартная, 219 мм, шаг составит 88 мм, при этом увеличить его, к примеру, до 100 мм можно, а вот уменьшить, нельзя, согласно типовой технологической карте (ТТК) кладки стен из керамических блоков. По этой ТТК, под перекрытия из многопустотных железобетонных плит рекомендуется заливать армопояс.
Производители же блоков допускают возможность упрощенного усиления кладки арматурой без необходимости заливки армопояса.
Армопояс под перекрытиями не нужен – перед установкой плит перекрытия достаточно проложить арматуру по периметру стены и немного увеличить высоту кладочного раствора. Специалисты технической поддержки проконсультируют по всем вопросам, от выбора материала, до дальнейшей эксплуатации дома.
Что касается «вечного» вопроса по поводу вентзазора между стеной из керамики и облицовочным экраном из кирпича – он не нужен. Наличие свободного вентилируемого пространства обязательно в композитных системах, включающих слой теплоизоляции.
Полная инструкция по кладке блоков – в формате видео.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Таблица 1
Металл |
Коэффициент теплопроводности металлов при температура, °С |
||||
— 100 |
100 |
300 |
700 |
||
Алюминий |
2,45 |
2,38 |
2,30 |
2,26 |
0,9 |
Бериллий |
4,1 |
2,3 |
1,7 |
1,25 |
0,9 |
Ванадий |
— |
— |
0,31 |
0,34 |
— |
Висмут |
0,11 |
0,08 |
0,07 |
0,11 |
0,15 |
Вольфрам |
2,05 |
1,90 |
1,65 |
1,45 |
1,2 |
Гафний |
— |
— |
0,22 |
0,21 |
— |
Железо |
0,94 |
0,76 |
0,69 |
0,55 |
0,34 |
Золото |
3,3 |
3,1 |
3,1 |
— |
— |
Индий |
— |
0,25 |
— |
— |
— |
Иридий |
1,51 |
1,48 |
1,43 |
— |
— |
Кадмий |
0,96 |
0,92 |
0,90 |
0,95 |
0,44 (400°) |
Калий |
— |
0,99 |
— |
0,42 |
0,34 |
Кальций |
— |
0,98 |
— |
— |
— |
Кобальт |
— |
0,69 |
— |
— |
— |
Литий |
— |
0,71 |
0,73 |
— |
— |
Магний |
1,6 |
1,5 |
1,5 |
1,45 |
— |
Медь |
4,05 |
3,85 |
3,82 |
3,76 |
3,50 |
Молибден |
1,4 |
1,43 |
— |
— |
1,04 (1000°) |
Натрий |
1,35 |
1,35 |
0,85 |
0,76 |
0,60 |
Никель |
0,97 |
0,91 |
0,83 |
0,64 |
0,66 |
Ниобий |
0,49 |
0,49 |
0,51 |
0,56 |
— |
Олово |
0,74 |
0,64 |
0,60 |
0,33 |
— |
Палладий |
0,69 |
0,67 |
0,74 |
— |
— |
Платина |
0,68 |
0,69 |
0,72 |
0,76 |
0,84 |
Рений |
— |
0,71 |
— |
— |
— |
Родий |
1,54 |
1,52 |
1,47 |
— |
— |
Ртуть |
0,33 |
0,09 |
0.1 |
0,115 |
— |
Свинец |
0,37 |
0,35 |
0,335 |
0,315 |
0,19 |
Серебро |
4,22 |
4,18 |
4,17 |
3,62 |
— |
Сурьма |
0,23 |
0,18 |
0,17 |
0,17 |
0,21 |
Таллий |
0,41 |
0,43 |
0,49 |
0,25 (400 0) |
|
Тантал |
0,54 |
0,54 |
— |
— |
— |
Титан |
— |
— |
0,16 |
0,15 |
— |
Торий |
— |
0,41 |
0,39 |
0,40 |
0,45 |
Уран |
— |
0,24 |
0,26 |
0,31 |
0,40 |
Хром |
— |
0,86 |
0,85 |
0,80 |
0,63 |
Цинк |
1,14 |
1,13 |
1,09 |
1,00 |
0,56 |
Цирконий |
— |
0,21 |
0,20 |
0,19 |
— |
Это интересно: Таблица плотности металлов (кг/м3) — какова плотность чугуна
Что такое поризованный кирпич или теплая керамика
По терминологии ГОСТ 530-2007 поризованный кирпич с размерами более 1.4НФ (250х120х88 мм) это строительный камень (1.8НФ, 2.1НФ, 2.9НФ, 3.2НФ, 3.7НФ, 4.5НФ) или крупноформатный камень (4.9НФ, 6НФ, 6.8НФ, 9.3НФ, 10.7НФ, 11.2НФ, 14.3НФ) со сквозными пустотами, которые могут быть квадратными, прямоугольными или щелевыми. Использование сквозных пустот увеличивает теплозащитный свойства камня, как за счет воздушных прослоек, так и увеличения пути теплообмена через основной материал – обожженную глину.
Ряд европейских, а затем и российских производителей увеличили общую пустотность камня до 50-53% за счет искусственной поризации основного материала путем введения в рабочую смесь глины с добавками при формовании мелкодисперсных частиц из бумаги, полистирола, древесины и т.п.. Эти частицы в процессе отжига выгорают, формируя множество мелких пор в макроструктуре материала, величина и расположение которых определяется дисперсностью вводимых добавок, их способностью к агрегации (объединению), качеством замеса и интенсивностью слияния пузырьков газа при отжиге в макропоры и раковины.
В целом такой процесс поризации керамики мало прогнозируемый и мог бы обусловить большую анизотропию свойств аналогично поризации в пеноблоках со всеми соответствующими негативами, но благодаря небольшим толщинам стенок пустотного камня и интенсивному схватыванию глины при отжиге слияние газовых ячеек в макродефекты не становится критичным. Вместе с тем, сквозные пустоты, как правило, вертикальные в поризованном кирпиче-камне уже и есть макродефекты, что определяет анизотропные свойства материала, как минимум по основным пространственным осям. Т.е. прочностные и теплотехнические свойства поризованного камня будут разными по длине, ширине и высоте, в то время, как лучшие автоклавные газобетонные и газосиликатные блоки индифферентны к пространственному направлению.
Анизотропия свойств поризованного кирпича имеет важное значение, причем не столько в контексте теплозащиты, сколько при выполнении технически грамотных расчетов по определению критических нагрузок на стены из поризованного камня. Пригодный для возведения зданий большой этажности по пределу прочности на сжатие в направлении плоскости постели, поризованный кирпич может стать критическим звеном в ограждающей оболочке дома/здания при сдвиговых нагрузках, формирующих напряжения среза под разными углами к плоскости постели, где прочность камня из-за сквозных пустот на порядок ниже
Как результат – трещины в стенах по телу (!) поризованного кирпича, риски обрушения и снижение теплозащитных свойств ограждающей оболочки дома.
Способы повышения теплоотдачи
Указанные в техпаспорте характеристики конвекторов являются таковыми при соблюдении идеальных условий, параметры теплоотдачи радиаторов отопления в таблице также соответствуют этому. К сожалению, на бытовом уровне это невозможно.
Реально тепловой поток радиатора немного ниже, также происходит потеря тепла благодаря множеству факторов. И среди них тот, что стандартные параметры указаны для входящей температуры чистой воды порядка семидесяти градусов по Цельсию, а на самом деле до потребителя доходит уже загрязненный поток 50-60 градусов теплоты.
Чтобы увеличить параметр теплоотдачи, специалисты советуют:
Утепление. Чтобы в помещении сохранялось больше тепла, необходимо утеплить его. В квартирах и домах это можно сделать как снаружи, так и изнутри. Для этих целей используют специальные пенопластовые панели: двух-пятисантиметровой толщины для наружной отделки, полусантиметровой – для внутренней. Также необходимо утеплить и крышу.
Установка отражателя. Отражающий материал (обычно им служит пенопропилен фольгированный с одной стороны) закрепляется на стене за радиатором и служит для отражения инфракрасного излучения, чем повышается теплоотдача радиаторов отопления (в таблице выше приведены данные по этому параметру).
Герметичность. Сквозняки в помещении значительно снижают количество теплого воздуха
Утепление будет гораздо эффективнее, если уделить внимание окнам и дверям, обеспечив только санкционированное поступление воздушных масс.
В любом случае, какой бы вид радиаторов ни устанавливался, нужно внимательно изучить характеристики приборов и пригласить для их монтажа специалиста.
Конвекция в атмосфере
Важность атмосферной конвекции велика, поскольку благодаря ней существуют такие явления, как ветры, циклоны, образование облаков, дожди и другие. Все эти процессы подчиняются физическим законам термодинамики. Среди процессов конвекции в атмосфере самым важным является круговорот воды
Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж
Среди процессов конвекции в атмосфере самым важным является круговорот воды. Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж.
Смотреть галерею
Круговорот воды осуществляется следующим образом: солнце нагревает воды Мирового океана, и часть воды испаряется в атмосферу. За счет процесса конвекции водяной пар поднимается на большую высоту, охлаждается, образуются облака и тучи, которые приводят к возникновению осадков в виде града или дождя.

Эта тема закрыта для публикации ответов.